Archive | Through the Reticle RSS for this section

Video Special – UTG 2: Under the Gun Fo Reelz This Time

For your Halloween enjoyment.

All About Rifle Scope Reticles

A reticle is simply a set of markings inside an optical device for use in measuring, pointing, aiming, etc… My 8″ Newtonian telescope comes with an eyepiece that you can use for aligning the telescope with the Earth properly so its drive motor programming can drive it to pre-determined stars and planets automatically. Inside that eyepiece is a reticle of sorts, there are several stars and constellations. You adjust the scope to place the legs facing north and those reticle elements on the actual image of the sky. Once the reticle and the real stars are aligned, the telescope is aligned. Nifty huh?

Reticles_assortment

In weapon scopes we have quite a lot of variety. Part of that comes from the variety of weapon types and part comes from the variety of ways those weapons may be utilized. There is such a thing as a general purpose rifle scope which would tend to come with a general purpose reticle. Anything that’s meant to be general purpose can be pressed into service for most needs but it’s not going to be optimal for probably any of them. This means it’s important to select your reticle with the same pickiness that you’d select your rifle, your ammo or your boots. Make sure it’s up to the task.

Reticle designs have exploded in number and manufacture method in recent years. As people have crafted solutions to new and old problems, the number of reticles and their specialization has dramatically increased. What many will find surprising is how astonishingly old most of the technology used today is. There is some exciting technology that’s been developed in more recent years but the fundamental method for creating a reticle hasn’t changed in centuries.

Reticle Manufacture Methods:

Wire/Hair:
wire_reticle
In the oldest days you may have had a simple crosshair which would have literally been a pair of intersecting spiderwebs (which are astonishingly strong and flexible) or actual hairs (later wires) tied between posts inside the scope. Primitive and fragile though they are, they solve the first problem: The aim point. Now there is one instead of just a view of some section of the target with no identified center. Before long it was realized that there was a growing need for more sophisticated aiming points and for those points to be useful for intelligence gathering. Thankfully the technology to make such a thing had existed for a very long time already. One problem a wire crosshair will never experience is flecks of debris appearing to float on or around the reticle. That only happens with etched reticles because of gravity, which brings us to:

Etched:
etched_reticles
As early as the 1700’s crafty people were thinking of etching a reticle onto glass. This practice allows extreme flexibility in reticle design as floating elements can be very easily accommodated. This is the dominant system in top quality magnified rifle scopes today. Some have said that etched reticles are less durable than wire (Wikipedia). I would dispute the hell out of that. A genuine problem brought in by etching is that the etched bit will disperse some light thereby lessening transmission marginally more than a wire reticle. Etched reticles are more expensive and difficult to manufacture and they are going to be able to rotate which is annoying and unhelpful and requires advanced adhesive technology or mechanical impingement systems. Where wire hairs may break under the stress of a big shock (like dropping the rifle), etched reticles may also rotate after a big shock. Etched reticles also exist on their own hunk of glass. Glass isn’t going to transmit 100% of the light so you will lose some.

Collimated/Reflected/Reflex:
Reflex_Sight
Reflected reticles aren’t inline with the incoming light like wire and etched reticles. Reflected (called Reflex) reticles are literally projected onto a lens at an angle and the image reflected back to the shooter superimposed and collimated with the target image. The AimPoint CompM2 uses this system as do many red dot sights. The need to project light onto the lens through which the primary image is coming means that there’s a sort of minimum line width and brightness which is pretty beefy when compared to a wire or etched reticle. There’s also the potential problem of bloom. Bloom is not entirely common anymore but it consists of a scatter effect like looking into bright lights at night. Reflex reticles which are high quality will not exhibit bloom. Because there are no physical parts of the reticle you can get very creative about reticle design just like with etched reticles. Battery life with these can be ridiculously long (on the order of years of power-on running) because of the low power output needs of the illuminator. The Burris FastFire III uses this system.

Holographic:
holographicreticle
Holographic reticles are much like Reflex reticles in that they use light to bring the reticle to life. Unlike Reflex sights that project light onto an interior surface to form the reticle, a holographic sight uses an etching on a lens element in the primary optical path which is illuminated by collimated laser diode. It’s a bit like a mixture of an etched reticle with an illuminated/reflex reticle. Similar to Reflex sights, holographic sights can suffer from bloom. Battery life with these can be poor compared to a Reflex sight due to increased power needs to illuminate the hologram. Eotech 512.A65’s use this system.

Reticle Focal Plane:

front-and-second-focal-planes-of-the-rifle-scope

Focal plane is pretty simple to contemplate. First focal plane refers to the placement of the reticle element literally near the front of the scopes internals with the result of the reticle being the same angular size relative to the target or object being viewed. If I were to wear a t-shirt with a big X on it and walk towards you, you’d see the X get bigger and bigger because it’s attached to me. Second focal plane refers to the reticle always staying the same size. This can be modeled by placing a big wire X a few feet in front of you and having the target move toward you but not having the X move. The X would appear to stay the same size while the targets apparent size would continuously change. Each has its place. This only matters with variable magnification scopes. With a fixed power scope, since magnification never changes, the actual location of the reticle becomes largely immaterial.

First Focal Plane:
First focal plane reticles are necessary if you want to use a reticle for estimating range to target and to be able to do so at any of the available magnification levels of your optic without having to take additional steps in the math or actions such as setting the magnification to a specific level. FFP reticles are wildly popular in the tactical/tacticool/sniper/long-range worlds where you’re shooting for hits rather than for X’s. FFP scopes will be more expensive than second focal plane if that’s the only difference between them. The reason is simple, another lens near the front of the scope. It’s a small and necessarily finely crafted lens with an exactingly precise reticle etched into it and it’s placed very far toward the front of the system of lenses by necessity. Small things that are super finely crafted and placed deep inside complicated mechanisms are expensive. That’s how things work. The lines inside the reticle on a FFP scope are at precise angular distances from each other and can be placed over other elements in the image to compare angular size. If you know the angular size and the actual size of the thing you’re looking at you can deduce how far away it is. When you increase magnification on an FFP scope the crosshair will appear to grow in direct proportion to the apparent size of the target. At low magnifications a FFP reticle may be little more useful than a standard Duplex. At high magnifications it may occlude quite a lot of the image of the target. That’s not going to be super helpful to people shooting for X’s but it is a very fast way to range and hold-off and allows the shooter to rapidly engage targets with lower magnification and to precisely compensate for wind, movement, etc… without having to fuddle with turrets.

SFP_FFP_images

Second Focal Plane:
Second focal plane reticles are desirable any time you want a fine reticle to stay fine as magnification changes. It might seem odd to some reading this, but sometimes folks do want that feature. Because the lens is placed closer to the rear of the scope and not deep inside its guts there’s typically a little more room for using a larger lens element, or even for just stringing a pair of wires across each other (some still do that). Because it’s SFP the lens element with the reticle can more durably be installed and it’s easier to fabricate, easier to install and cheaper because of that. Just because a scope is SFP doesn’t mean it’s not as good as a FFP scope. They have their purposes, each of them. Second focal plane scopes are extremely popular in target shooting applications where group size is measured and for hunting. If you’re shooting for X’s you’re going to be best served by a SFP scope.

Reticle Layout:

Fine, Duplex, Post, Mil-Dot, Circle, Target Dot, Christmas Tree, Hunter Ranging, SVD… Which one is right for you. You want the least complicated reticle that can do the job you need it to do. Having too much going on in the scope will absolutely slow the shooter down which will require more training to overcome. Below we’ll introduce some common reticles and some not so common ones and give a brief blurb about common uses for each. This is by no means going to be comprehensive because much like a screwdriver handle occasionally will become a hammer, a target scope sometimes will get used for hunting. Neither works great for off-book use cases but they can be made to work.

Fine:
finecrosshair
A fine crosshair is the simplest reticle that’s in common use. Two wires are crossed to form the X or T or whatever letter you wanna call it. They’re typically pretty fine and their width is controlled by using wider or narrower wire to make them. In low light situations these can be very difficult to use and if they’re the old school type that are actually made of hair or spiderweb or wire then breakage is a concern. Benchrest shooters, people shooting for X’s and those shooting for group size will quite often choose this layout along with extremely high magnification as it obscures the least possible amount of the target so they can see their bullet holes, even from a great distance and even with very small bullets.

Duplex:
duplex
Duplex reticles are a fine-ish crosshair in the center that grows to be quite wide nearer the edges. The transition is normally abrupt rather with a very short triangular taper. These are just about perfect for hunting non-dangerous big game with a rifle. Low light situations are helped by the wider lines and precision isn’t hampered because the crossing lines are still fine. The thicker lines guide your eye naturally to the center so they’ll much more easily pick up the fine hairs in low light. This is probably the most popular reticle in the USA and is used on the vast majority of hunting rifles that are equipped with a scope. Some companies have made FFP versions (the 30/30 reticle for example) but most are on SFP scopes.

German #3/Post:
german
Also called the German reticle provides an open field of view with minimal stuff going on and is ideal for hunting dangerous game and was heavily used in early eastern European sniping scopes. The thick center vertical post is quick to pick up even in low light. The pointed top of the post allows combat sniping precision without a temptation for the sniper to spend too much time refining their aim point. The thick horizontal bars at the edges help the sniper avoid canting the rifle. The reticle is simple to make and lacks ranging stadia. For German snipers in WWII this was very effective. When hunting dangerous game or hunting in a dangerous environment the lack of extraneous stadia makes for a very high level of situational awareness and increased speed of use. Things don’t always need to look fancy to be sophisticated. This forms the foundation of the much more sophisticated SVD type discussed further below.

Mil-Scale/Mil-Dot:
milscale
mildot
Scopes with reticles with miliradian subtends can be used very easily for range estimation and provide a brilliant method of fire correction. There are 2*Pi radians in a circle which isn’t helpful for most people. In the interests of not making you do math, suffice it to say that for 1 radian there are about 57degrees of arc. That’s a huge amount of arc so we cut it into 1000 little pieces which are very approximately .3 minutes of angle each (which works out to about .36 inches at 100yards). There are 60 minutes in each degree so we’re talking about a very fine set of intervals which allows very small differences in target size to be helpful in estimating target range which makes for great precision. Why not use minutes of angle? When using Mils/MRAD everything we do is in base10 and we tend to do it with metric measurements of the target and world which makes for easy math. Minutes of angle on the other hand uses base60 (thanks ancient fertile crescent residents for the hellish system of mathematics) and the SAE measurement system (feet/inches) is base12. Base60 and base12 are compatible in places (12*5=60 right) but they’re not easy to mix in your head and few of us have 12 fingers to count on to help. Scopes with their reticles in mil-scale and with mil-scale turrets make fire corrections ridiculously simple, especially if you use metric linear measurements for target size and range. With a scaled reticle like these and turrets in MRAD you can watch where your bullet landed, measure it in the reticle, adjust exactly that much up/down/left/right and fire. There’s no converting to or from minutes of angle and no guesswork. Scopes with mil-scale reticles are wildly popular in many forms of shooting including PRS, Long Range Tactical, 3-Gun, etc.. as well as with tactical/SWAT units of police departments and military snipers. If you need flexibility between being able to deliver slow precision fire and being able to deliver rapid and effective if slightly less precise fire (precision and speed are mutual enemies).

MOA-Scale:
moascale
This is more or less the same as a mil-scale but instead of using miliradians they will use minutes of angle or some fraction thereof. All the same basics in use case apply from mil-scale to moa-scale. There are reasons to use a MOA-scale reticle and it’s entirely probable that if you need one, you know it and know why. There is also a sub-type of MOA scale which is IPHY or inch per hundred hards. 1MOA is 1.05 (or 1.09 depending on how you measure) inches at 100 yards. Because different scope companies had different ideas of how to measure 1MOA some other companies decided to say the heck with it and adopted a system which is exactly 1 inch at 100yards. The math is much easier to do in your head without extraneous decimal places in the significant digits. While IPHY is by definition not MOA it’s very very similar. Both have smaller linear distances covered at any distance than MRAD with IPHY having the smallest subtended linear distance. The small value lends itself to a smaller click value and the ability to dial more precise adjustments. For target shooters an IPHY scale would probably make sense. For those that just can’t grok the metric system of linear measures, the MOA scale is probably up your alley (though you should really learn the metric system for your own benefit).

Circle/CQT/CQC:
circle-scale
These used to be nearly exclusive residents of the realm of shotgun scopes but someone figured out that they make brilliant combat reticles because they’re super fast and easy to use. Put your target in the circle and kill it. Simple. Now we’re starting to see really clever things like circle reticles being placed in the second focal plane and a secondary crosshair or scaled reticle being placed in the first focal plane in the same scope. This in theory enables the shooter to engage long range precision targets as well as deal with high intensity combat at conversational to hollerin’ distances. That combination is finding more and more appreciation within the 3-gun world as well but still has its home in more genuinely deadly use cases. This is a case of everything and the kitchen sink. It’s not going to be perfect for most anything except for giving someone in battle a leg up if they’re well trained with it.

Target Dot:
targetdot
This may consist of a simple dot in the center of the field of view but is more commonly combined with a fine crosshair. The dot may cover anything from 1/8moa to 3moa or more. These are popular with many sorts of target and varmint shooters. The tiny dot moving over your target gives an easy to see and fast to pick up signal to the brain to pull the trigger while the fine crosshairs give an aid in not canting the rifle. In metallic silhouette competition these are wildly popular especially in very high magnification scopes. Varmint hunters seem to really like the hair:dot system as well as many target disciplines which go by X count or group size or both.

Christmas Tree:
christmastree
These are a more recent development which has gained popularity across the shooting sports and military world. These consist normally of a first focal plane mil-scale cross-hair reticle which is then decorated with elevation and windage stadia in something of a pyramid below the primary horizontal cross-hair. While pretty busy in the eye these reticles allow for the user to hold off from the center of the target to account for range, wind and movement without having to twist the turrets. That makes these a potentially incredibly fast scope to use particularly on ultra challenging PRS courses because you can transition from close targets to far targets without having to tinker with your scope. Horus has come up with a pretty big selection of this type of reticle. There are also many proprietary reticles of this type. When selecting this type of scope reticle for use it’s important to know about how much training you’ll need to do to be proficient with it as well as picking the exact design that well suits your needs. These make a pretty poor scope for shooting for groups or X’s in competition, they’re not ideal for most hunting situations either. They’re fantastic for speedy target acquisition and engagement in tactical and simulated tactical pursuits.

Ballistic Drop Compensating / Hunter Ranging:
bdc2
bdc
Ballistic Drop Compensating (BDC) reticles come with additional intersecting lines on the vertical post that correspond to various ranges based on your muzzle velocity and bullet choice. These are fine for short to intermediate ranges but rapidly lose veracity as range increases. Up to about 400 yards they’re great but after that actual ballistics should be referred to to assure a humane harvest of your target animal. Some of these reticles like the Bushnell 30/30 (which appears to be a regular duplex until you find out it’s first focal plane) are meant specifically for deer hunters so they can quickly range their target. There’s a long running debate in some circles about whether including ranging and distance compensation features in a hunting scope is really worthwhile or if it’d be better to either not have them or to get a scope with those features fully implemented, like a mil-scale scope. While mil-scale reticles and MOA scale reticles have their secondary line intersections at precisely equal angular distances, BDC type reticles almost uniformly do not place the secondary aim points at even intervals. This makes them more difficult to train on, memorize and apply to new situations and environments. BDC reticles are generally limited to .5km distances and should be as things like air temperature and barometric pressure really start to matter around there. For people with a small area of operations and a mission profile that allows for shots being limited to 500m or under these are pretty good options for shooting at meat. For target use, they’re generally inappropriate but like a screwdriver handle can become a hammer, a BDC scope can be pressed into service as a target scope with some performance consequences.

SVD:
svd
A fairly unique reticle that’s more or less limited to eastern bloc Soviet aligned countries’ sniper rifles. This reticle is actually a series of them. There’s a ranging box meant for use with human and human sized targets to provide rapid range estimation. There are chevrons which provide hold-overs and there is a horizontal mil-scale for hold-offs and whatever else you find you need them for. While being possibly the foundation of the ideal universal reticle the SVD reticle just hasn’t caught on with western shooters like those above have. It’s not meant for precision but instead; and in a very Soviet way, for combat. It’s meant to allow poorly trained designated marksman to put reasonably accurate fire against human and materiel targets with the least amount of hassle (training) possible. Where western armies developed doctrine that used snipers as force multipliers and intelligence gathering resources, the Soviets were less interested in having front line troops reporting intel back up and seemed happy to have them just go ahead and engage the enemy. Again, pretty standard Soviet thinking. They did understand ever since WWII that effective use of large numbers of designated marksman does sap the heck out of your enemies will to fight and their ability to freely move around and this sort of reticle is ideal for that. It’s not very good at all as a target reticle for any pursuit where you’re counting group size or X’s but like everything, can be pressed into service with consequences.

Choosing the Right Reticle for You:

First: remember that a fine crosshair is about the standard minimum. Every reticle feature or element after that that you add in after that will either increase the cost of your final product, orient your scope for use in one pursuit or another or force the manufacturer to reduce its quality to maintain profitability. So, keep it as simple as you can and don’t buy what you won’t use. We all want the whizz-bang-est scope in the world. It’s nice to own the best when the best is measured by its cost. In this case though the best is that which accomplishes the mission without costing you anything extra.

While you’re shopping around decide if you need first or second focal plane first. This will be the thing that limits your available selection the most. If you shoot competitions at unknown ranges then first focal plane is almost dictated if you want to not have to lug around a laser rangefinder. If you shoot in competitions where group size is important then you’ll probably be best served by second focal plane. That’s a good rule of thumb but not gospel so think about it and see what others are using before you make a purchase. Other competitors are going to on average have a set of features in common and are your best source of comparative shopping especially since they’ll usually be pretty generous about letting your look through and compare different brands and models. Hunting at close to intermediate (<500yrds) ranges won’t make any dictates about FFP vs. SFP but anything further you’ll want to consider the environment (vegetation, terrain, species) carefully as well as lighting. Fine crosshairs in low light can be difficult to use. Broad crosshairs against a small target are just as hard to use.

After you’ve figured out which focal plane you want the reticle in and what purpose you’re putting this gun to we can start figuring out if you need ranging capability and from there if you need advanced features like hold-overs and hold-offs and if they need to be in even intervals or not. If you don’t need ranging capability, don’t get it. It’s just a distraction in the image if you’re not using it. If you don’t need BDC, don’t get it. If you need a target dot, get one. Below is a list of some of the reticles of my scopes and what guns they’re on and some of my reasons for choosing them. These are representative of the world at large in most cases and will hopefully provide some context.

Woods Big Game Hunting Rifle, .30-06: <1960 Weaver K3 3x fine crosshair.
I use this for hunting in dense woods for deer, elk, bear and hog. Low magnification and a fine crosshair make for a rifle easy to use in bright light but not so much in low light. I walk hunt when I hunt the woods so I don’t spend much time in low light.

High Power Metallic Silhouette Match Rifle, 7mm BR: Weaver T24 24x44mm AO fine crosshair & 1/8MOA dot.
Super high magnification (24x), fixed power and adjustable objective with target turrets. The thin crosshair helps me avoid canting the rifle. The target dot makes for instinctive trigger pulling when the dot covers some section of the metal target. Silhouette competition is done standing up without shooting aids like glove/jacket/sling and we have to knock the target over so a hit anywhere on it is all we really care about. Super high magnification helps me keep only 1 target in the scope at a time. Lots of downsides makes this a bad choice for a beginner and a catastrophic choice for things like deer hunting in the woods. This is not for everyone but is popular in target sports. They’re super popular with long range varmint hunters as well.

Long Range Precision Match Rifle, .223rem: US Optics ST-10 TPAL MPR reticle.
This rifle is used from 200-1000m to engage metal gongs at known distances under time pressure. The MPR reticle has extreme flexibility in the reticle without getting to be a Christmas Tree. There are subtends in there that aren’t actually listed, they’re implied, and so this reticle takes a bit more training than a simple mil-dot system. Fixed 10x magnification is easy to use when scanning along a ridge line for concealed targets. I have also used a 16×42 on this rifle and found that that was often too much magnification when you’re moving from target to target.

Long Range Precision Match Rifle, .308Win: US Optics ER-25 5-25x58mm MPR reticle.
This is the big brother to my .223 match gun. If winds are too heavy for .223 I use this rifle. Having the same reticle as my ST-10 equipped .223 rifle means I have less to train for. The ER-25 is a 5-25x58mm while the ST-10 is a 10x37mm so the ER-25 is a FFP which is an irrelevance for the ST-10 since it’s a fixed magnification scope. Being able to drop the magnification on the ER-25 to 5x makes targets in the distance easier to find (greater field of view) and then you can just zoom in to 20-25x. 25x is too much magnification for most things so it rarely sees full magnification. This scope is best left to tactical and tacticool sorts of pursuits. This scope occasionally will see my big 7mag for shooting up to a mile against 2MOA steel gong targets but that’s mostly because it has the adjustment range and the magnification, not because it has the perfect reticle for that.

Plains Deer Rifle, 7mm Rem Mag: Vintage 3-9x37mm 30/30 Duplex FFP.
This rifle is explicitly for shooting at deer in open grasslands. Shots can be from 10yrds to 600yrds. The 30/30 reticle is a standard duplex reticle in the first focal plane. It’s meant to match a 30 inch width regardless of magnification which is about the same size that an adult deer is long from neck to butt. You can tell by what portion of the reticle is taken up by a deer about how far that deer is from you. It’s handy and light and gives a feature I find useful while having snag free low capped turrets, fixed parallax and an uncomplicated reticle. Uncomplicated scope, uncomplicated rifle, uncomplicated reticle.

Alpine Big Game Hunting Rifle, 7mm Rem Mag: Leupold VX2 3-9x33mm Duplex SFP.
This rifle is explicitly for shooting at deer in the California hills. Shots can be from 10feet to 500yrds. The duplex reticle is in the second focal plane. It’s just a basic rifle scope on a basic rifle. I find it useful to have snag free low capped turrets, fixed parallax and an uncomplicated reticle. This rifle gets walked over rocky terrain in high mountains so it needs rugged and simple with a crosshair that works high and low light and doesn’t needlessly obscure the image.

 

SWFA 10X42 SS HD

This is the top shelf 10x fixed power from SWFA. The scope is quite clear and bright and shows great resolution. It’s not quite US Optics or Schmidt & Bender but it’s appropriate clarity for the price.

Price Point: $800

sshd10x42mq

Pic taken at mid-morning on a bright sunny day with quite a bit of atmospheric haze. Parallax is set for 200m. The hillside is 200m, the Rams are 500m away. The scope has a very narrow eye-box which made it difficult to get a picture.

IMG_0504

IMG_0507

Vortex Razor HD 65mm Angled Spotting Scope

These things have really awesome glass. Bright as hell and clear as a crystal but the best thing about them is the field of view.
This is a 18x Long Eye Relief eyepiece i

razorHDspotter

Pic taken at mid-day in bright sunny but slightly hazy conditions. Targets at the back are 385m, pig shaped targets are at 300m. The guy on the quad is at ~350m.

Price point: $1600 with eyepiece and cover.

IMG_0535

US Optics ST-10 10x37mm, SWFA SS 16x42mm, SWFA 10x42mm, Bushnell ET3200 10x40mm

U.S. Optics ST-10 TPAL

Pic taken at dusk, clear skies, looking at 400m distant targets. Some of the most amazing glass on Earth. Simply epic. Clear, bright, amazing color and detail resolution from mid-day to dusk. Fine detail visible at extended ranges.
This is a fixed 10x with parallax adjustment knob on the turret housing.
Price point is $1500+ as configured here.
NOTE: U.S. Optics is a custom scope company. Their scopes can be configured in dozens of combinations.
opplanet-usoptics-10x-ergo-riflescope-1023
Click pic to embiggenate

ST-10 TPAL through the reticule.

ST-10 TPAL through the reticule.


SWFA SS16x42

Pic taken at dusk, clear skies, looking at 500m distant targets. This is the highest magnification I would recommend with the Super Sniper line unless you go HD. Another perfect scope for the budget minded. You can see individual bullet impacts on the targets and the edges of dark to bright transitions are pretty clear and discreet to longish ranges.
This scope is a fixed 16x with adjustable parallax on the ocular bell.
Price point is $300.
NOTE: This scope is available in 6x, 10x, 12x, 16x, 20x.
ss16x42

Click pic to embiggenate

16x Super Sniper through the reticule.

16x Super Sniper through the reticule.


Bushell Elite 3200 10×40 & ET1040

Pic taken at mid-day, bright skies, looking at 500m distant targets. You can see how targets have a little fuzz on their edges and details of color aren’t shining thorough. This is the lowest end glass you can do long range with very effectively. I would limit it to 500m or less though I have gone 1000m+ with them.

This scope is a fixed 10x with fixed parallax (100yrds).
Price point is $190-250
NOTE: Mil/Mil version available exclusively at MidwayUSA.com.
et1040mil-mil
Click pic to embiggenate
IMG_0377


%d bloggers like this: